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Weak Interactions Between Organic Molecules and Alkali Metal Ions
Present in Zeolites Help Manipulate the Excited State Behavior

of Organic Molecules

V. Ramamurthy*
Department of Chemistry, Tulane University, New Orleans, LA 70118

Zeolite is a porous highly interactive matrix. Zeolitic cations help to generate triplets from molecules that possess
poor intersystem crossing efficiency. Certain zeolites act as electron acceptors and thus can spontaneously generate
radical cations. Zeolites also act as proton donors and thus yield carbocations without any additional reagents.
These reactive species, radical cations and carbocations, have long lifetime within a zeolite and thus lend
themseleves to be handled as ‘regular’ chemicals. Internal structure of zeolites is studded with cations, the
counter-ions of the anionic framework. The internal constrained structure and the cations serve as handles for
chemists to control the behavior of guest molecules included within zeolites. 
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INTRODUCTION

Being inspired by and having realized the complexity of
natural systems, chemists have utilized a number of organized/
confined media to study the photochemical and photophysical
behavior of guest molecules [1-3]. Examples of organized media
in which the guest molecules behavior has been investigated
include molecular crystals, inclusion complexes (both in the
solid and solution states), liquid crystals, micelles and related
assemblies, monolayers, LB films, surfaces and natural systems
such as DNA. In this article a partial overview of the activities in
our laboratory, utilizing zeolite as a medium for photochemical
and photophysical studies, is presented. 

Structure and Properties of the Medium. Zeolites. Structure.
Most of our studies have utilized faujasites and pentasils as

the media. Zeolites in general may be regarded as open
structures of silica in which aluminum has been substituted in
a well-defined fraction of the tetrahedral sites [4-8]. The
frameworks thus obtained contain pores, channels and cages
of different dimensions and shapes. The substitution of trivalent
aluminum ions for a fraction of the tetravalent silicon ions at
lattice positions results in a network that bears a net negative
charge which is compensated by positively charged counter
ions. The topological structure of X- and Y-type zeolites
(faujasites) consists of an interconnected three dimensional
network of relatively large spherical cavities, termed supercages
(diameter of about 13.4 Å; Figure 1). Each supercage is
connected tetrahedrally to four other supercages through 7.6

Å windows or pores. Charge-compensating cations presen
the internal structure of X and Y zeolites are known to occu
three different positions; the first type (site I), with 16 catio
per unit cell (both X and Y), is located on the hexagonal pri
faces between the sodalite units. The second type (site
with 32 per unit cell (both X and Y), is located in the ope
hexagonal faces. The third type (site III), with 38 per unit c
in the case of X type and only eight per unit cell in the case
Y type, is located on the walls of the larger cavity. On
cations at sites II and III are expected to be readily access
to the organic molecule adsorbed within a supercage. Cha
compensating cations are exchangeable and such an exch
brings along with it a variation in a number of physic
characteristics such as electrostatic potential and electric f
within the cage, the spin-orbit coupling parameter and 
vacant space available for the guest within the supercage.

Pentasil zeolites (ZSM-5 and ZSM-11) also have thre
dimensional pore structures (Figure 1); a major differen
between the pentasil pore structures and the faujasites desc
above is the fact that the pentasil pores do not link ca
structures as such. Instead, the pentasils are composed o
intersecting channel systems. For ZSM-5, one system cons
of straight channels with a free diameter of about 5.4×5.6 Å
and the other consists of sinusoidal channels with a f
diameter of about 5.1×5.5 Å. For ZSM-11, both are straigh
channels with dimensions of about 5.3×5.4 Å. The volume at
the intersections of these channels is estimated to be 373

for a free diameter of about 8.9 Å.

Zeolite as a Reaction Cavity. Characteristics.
One is accustomed to carrying out reactions in large reac

vessels that are disproportionately larger than the size o
molecule. However, when the size of the reaction vesse
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nearly the same as that of the reactant molecule, one will have
to consider factors that might normally be ignored. While a
photochemical macromolecular reactor, such as a quartz cuvette,
should play no role on the photochemical events occurring on
the substrate of interest, a molecular-sized enclosure would be
capable of influencing the reactivity of the substrate. Zeolites
similar to glasses and quartz vessels are made up of silica and
alumina and therefore, generally one should be able to excite
an organic molecule without perturbing the electronic structure
of the zeolite.

Reactions taking place within a zeolite can be envisioned to
occur within an enclosed space which we call as a ‘reaction
cavity’ [9,10]. The term ‘reaction cavity’ was originally used
by Cohen to describe reactions in crystals [11]. He identified
the reaction cavity as the space occupied by the reacting
partners in crystals and used this model to provide a deeper
understanding of the topochemical control of their reactions.
Selectivity seen for reactions in crystals, according to this
model, arises due to lattice restraints on the motions of the
atoms in reactant molecules within the reaction cavity. In
other words, severe distortion of the reaction cavity will not
be tolerated and only reactions that proceed without much
distortion of the cavity are allowed in a crystal (Figure 2).
Crystals possess time independent structures; the atoms that
form the walls of the reaction cavity are fairly rigid and exhibit
only limited motions (e.g., lattice vibrational modes) during
the time periods necessary to convert excited state molecules
to their photoproducts. Therefore, in the Cohen model, the
space required to accommodate the displacement of reactant
atoms from their original positions during a chemical reaction
must be built largely into the reaction cavity. Packing of
polyatomic molecules in crystals leaves some distances between
neighboring non-bonded atoms greater than the sum of their
Van der Waals radii. This creates a certain amount of free
volume, which may be so disposed as to allow the atomic
motions required to effect a reaction. In the usual case, a
reaction product will also place some stress on the host crystal
as is evidenced by the fact that crystals such as those studied

by Schmidt and Cohen are usually reduced to powders as
reaction progresses.

Can we extend the above reaction cavity concept, wh
emphasizes the shape changes that occur as the reactant
transforms itself to the product, to understand and predict
photobehavior of guest molecules included within a zeoli
We believe that such an extension should be possible w
some limitations. The concept of reaction cavity will serv
well as a vehicle for discussion of results obtained in media
which organized structures of hosts have significant effects
the photochemical response to excitation of guests. A reac
cavity is defined in terms of the factors such as ‘hard’ a
‘soft’ and ‘active’ and ‘passive’ and ‘free volume’. The conce
of free volume is introduced into the reaction cavity model
accommodate the shape changes that occur as the reac
transform themselves to products. For example, the shape
the free volume of the supercage within X and Y zeolites w
decide to some extent the nature of the product that is obta
from a guest molecule. The volume available for an orga
molecule within a supercage depends on the number and na

Figure 1. Structures of Zeolites: ZSM-5 and Faujasites (X and Y). Position of cations in X and Y zeolites shown as Type I, II and III.

Figure 2. The reaction cavity of a favorable (I) and unfavorab
reaction (II) in an organized medium. Large shape change in I
resisted by the medium.
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of the cation. As the calculated supercage volumes given in
Table 1 show, the available volume for a guest decreases as
the cation size increases from Li+ to Cs+ [12]. Since surfaces
of zeolites, possess time independent structures like crystalline
materials, the free volume needed to accommodate shape
changes which occur during the course of a reaction must be
present intrinsically within the fixed structure. Reaction cavities
of such media possess “hard” walls. Therefore it becomes
very important to choose a proper zeolite (with adequate free
volume) to steer a reaction towards a particular product. 

The above model leads one to conclude that ‘guests in hosts’
are similar to balls in boxes. But this analogy is very deficient.
In addition to being ‘hard’ or ‘soft’, cavity walls must be
characterized as ‘active’ or ‘passive’. A zeolite reaction cavity
has been characterized to be ‘active’. When the interaction
between a guest molecule and the cavity is attractive or
repulsive, the cavity is termed ‘active’ and when there is no
significant interaction it is considered to be ‘passive’.
Interactions may vary from weak van der Waal’s forces, to
hydrogen bonds to strong electrostatic forces between charged
centers. Zeolite surfaces contain a large number of cations
which can interact electrostatically with guests. Thus the cation-
guest interactions are expected to play a very significant role
in controlling the fate of an excited molecule. Factors that
determine the photochemical processes of a guest in a confined
space include structural aspects of both the guest and the host
zeolite and the nature of chemical and physical interactions
between the two.

Zeolite as a Spectroscopic Matrix
Photochemistry of triplets of organic molecules is a well-

developed field [13]. Despite its maturity, encountering systems
whose photophysical behavior is not as expected is not
uncommon. For example one might face a frustrating situation
of being unable to observe phosphorescence from molecules
of interest. Photochemists are also interested in characterizing

the reactive intermediates that might arise in a photochem
reaction. True to their name these intermediates have a flee
existence. In recent years zeolites have been shown to be
useful matrices for generating, stabilizing and observing reac
species such as triplets, radical cations, radicals and carboca
Results from our laboratory are highlighted below to impre
upon the readers the potential of zeolite as a matrix to obs
species of interest to photochemists.

Triplets
Phosphorescence emission from organic molecules has b

known since the last century [14]. Although very early repo
of phosphorescence from dye molecules used a solid ge
the matrix, low temperature organic solvent glasses have b
the primary choice for observation of phosphorescence fr
organic molecules [15]. While organic glasses are well accep
media, they pose limitations such as requiring the experime
be carried out at liquid nitrogen temperature and incorporat
of only small amounts of heavy atom solvents before an orga
glass becomes opaque. In the last two decades alter
matrices (silica gel, alumina, sucrose, chalk, paper, polym
micelles, and cyclodextrins) have been explored to rec
phosphorescence [16,17]. In a number of these media p
sphorescence even at room temperature has been obse
Occasionally heavy cation salts (eg., thallium, silver and le
salts) are incorporated to enhance the emission proc
However, studies have been mostly restricted to arom
compounds. We have established that zeolite is a powe
matrix to observe phosphorescence from organic molecu
even from those that do not phosphoresce under nor
conditions [18-22]. The potential of this technique is illustrat
with three examples, aromatics, polyenes and azo compou
Of the three sets of molecules, olefins and azo compou
rarely phosphoresce.

As shown in Figure 3, the emission spectrum of naphthal

Table 1. Cation dependence of supercage free volume in MY
zeolites

Cation
(M+)

Ionic
Radius of the
Cation (Å)a

Vacant Spaceb within the
Supercage (Å3)

Y-Zeolite X-Zeolite

Li 0.6 834 873
Na 0.95 827 852
K 1.33 807 800
Rb 1.48 796 770
Cs 1.69 781 732

a)R.J. Ward, J. Catalysis, 1968, 10, 34.
b)Calculations of polyhedral volumes were performed using a modification

of the POLYVOL Program [D. Swanson, R. C. Peterson, The Canadian
Mineralogist, 1980, 18(2), 153; D. K. Swanson, R. C. Peterson,
POLYVOL Program Documentation, Virginia Polytechnic Institute,
Blacksburg, VA] assuming the radius of the TO2 unit to be 2.08Å
(equivalent to that of quartz).

Figure 3. Emission spectra of naphthalene included within cat
exchanged X zeolite at 77o K. Note the relative intensities of
fluorescence and phosphorecence vary with the cation.
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is profoundly affected by inclusion in faujasites. For low-mass
cations such as Li+ and Na+, the emission spectra show the
typical naphthalene blue fluorescence. However, as the mass
of the cation increases (e.g., from Rb+ to Cs+ to Tl+), there is a
dramatic decrease in fluorescence intensity and a simultaneous
appearance of a new vibronically structured low-energy
emission band that is readily identified as the phosphorescence
of naphthalene. Table 2 lists excited singlet (at room tem-
perature) and triplet lifetimes (at 77 K) of naphthalene included
within various cation exchanged zeolites. It is clear that both
these lifetimes are cation dependent. As tabulated in Table 3
the spin-orbit coupling parameter of the cation increases with
the atomic weight. On the basis of the following observations

we conclude that the heavy-cation effect is responsible for
enhanced phosphorescence and decreased singlet and 
lifetimes for naphthalene within K, Rb, Cs and Tl catio
exchanged faujasites. It is well-known that the effect of exter
heavy-atom perturbation scales with the square of the perturb
spin-orbit coupling constant, ξ2 and that a log-log plot of τT−1

vs. ξ2 should be linear with a maximum predicted slope 
unity. As shown in Figure 4, the expected dependence
observed. For comparison, we have also provided in Figur
the linear relationship observed in two systems, namely
halonaphthalenes and 1,5-naphtho-22-crown-6, where 
external and internal heavy-atom effects, respectively, 
presumed to operate. The magnitude of the heavy-atom e
observed in zeolites is significantly larger than that observ
for the 1,5-naphtho-22-crown-6 exchanged with heavy-at
cations where the cation is rigidly held over the naphthale
π-face. In fact the zeolite samples show heavy-atom effe
nearly as large as for a series of 1-halonaphthalenes wher
perturbers are covalently attached to the chromophore. Th
attributable both to the close approach between naphtha
and the heavy atom which is enforced by the zeolite superc
and to the presence of more than one heavy-atom cation
supercage which leads to highly effective concentrations
the heavy-atom cation in the vicinity of the naphthale
molecule. If the heavy-cation effect is indeed responsible 
the variations in singlet and triplet lifetimes, one would expe
a linear relationship between singlet and triplet decays w
cation variation. Indeed this is observed. Further support 
the importance of heavy cation in enhancing the phosphoresc
come from the dependence of the ratio of fluorescence
phosphorescence on the Cs+ to Na+ content in a zeolite. As
seen Figure 5 the phosphorescence intensity increases 
the Cs+ ion content.

The above effect is found to be general. Intense p
sphorescence is observed for a wide range of different org

Table 2. Photophysical parameters for Naphthalene Included in
Zeolites

Zeolite
Triplet

Lifetimea (s)
Singlet

Lifetimeb (ns)
P/Fc

Li X − 33.0 1.0×10−4

Na X − 35.4 7.3×10−2

K X 1.72 19.4 0.16
Rb X 0.72 2.22 8.1
Cs X 0.20 0.23(87%), 1.87(13%) 45
Tl X    0.0012 − only P

Li Y − 31.8 1.2×10−3

Na Y − 25.1 1.0×10−3

K Y − 13.8 0.1
Rb Y − 3.8 9.0
Cs Y − 0.7 60

aThe lifetime measured at 77 K.
bThe lifetime measured at 298 K.
cPhosphorescence to fluorescence intensity ratio estimated at 77 K; the
number is independent of the wavelength of excitation.

Table 3. Estimated Spin-Orbit Coupling Constants for Metal cations
and the isoelectronic Noble Gas Atomsa,b

Cation
(isoelectronic

noble gas)
Electronic configuration

Spin-orbit coupling
constant ζ/cm−1

Li + (He) 1s2 0.7
Na+ (Ne) 1s2 2s2 2p6 520
K+ (Ar) 1s2 2s2 2p6 3s2 3p6 940
Rb+ (Kr) 1s2 2s2 2p6 3s2 3p6 4s2 4p6 3480
Cs+ (Xe) 1s2 2s2 2p6 3s2 3p6 4s2 4p6 5s2 5p6 6080
Li 0.23
Na 11.5
K 38
Rb 160
Cs 370

a. for cations the values are adopted from M. A. Anderson and C. B.
Grissom, J. Am. Chem. Soc., 1996, 118, 9552.

b. for neutral atoms the values are taken from S. L. Murov, I. Carmichael
and G. L. Hug, Handbook of Photochemistry, Marcel Dekker: New
York, 1993; p. 339.

Figure 4. Dependence of excited state triplet lifetime on the sp
orbit coupling parameter of the cation. A comparison betwe
crown ether systems, zeolites and 1-halonaphthalenes is provid
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guests such as anthracene, acenaphthene, phenanthrene,
chrysene, fluoranthene, pyrene, and 1,2,3,6,7,8-hexahydropyrene
when included in Tl+-exchanged faujasites. Fused aromatics,
with too large a diameter to fit through the 8 Å windows of the
X- and Y-type zeolites (e.g., coronene and triphenylene) do
not show any phosphorescence when included within a zeolite.

The unique feature of this method is that one is able to observe
phosphorescence from systems, which commonly fail to show
this emission in organic glassy matrices even when they are
subjected to heavy atom effect. Olefinic systems that under
normal conditions do not show phosphorescence emit from
their triplet states when included in Tl+-exchanged zeolites.
All- trans-α,ω-diphenylpolyenes exhibit very low intersystem
crossing efficiencies and efficient fluorescence. We have
succeeded in recording phosphorescence of these α,ω-
diphenylpolyenes by including them in Tl+-exchanged zeolites.
Figure 6 shows the observed phosphorescence of the α,ω-
diphenylpolyenes included in TlX. The singlet-triplet energy
gaps (∆T1->S0) obtained from the observed zero-zero lines
are in excellent agreement with literature predictions. A point
to note is that the wavelengths of phosphorescence from
trans-stilbene is slightly dependent on the excitation wavelength
(Figure 7). This we believe is due to the heterogenity of the
sites present within a zeolite. Stilbene molecules, most likely,
are present in various conformations within a zeolite and they
do not interconvert in the time scale of the emission.

The remarkable ability of zeolites to turn on phosphorescence
is related to the spin orbit coupling parameter of the cations
Cs+, Tl+ and Pb+. It should be noted that just grinding the
cation salt with organic molecules does not result in
phosphorescence. Zeolite structure favors intimate interaction
between cations and the included organic molecules. One could
view the zeolite structure as an expanded crystal lattice of a
cation salt. While in a powdered cation salt only the cations at

the surface interact with an organic molecule, within a zeo
almost every cation is able to interact with the organic molecu

The above observations demonstrate the ‘power’ of a zeo
as a new and versatile medium for ‘turning on’ the extern
heavy-atom perturbation of organic molecules in whic
intersystem crossing (ISC) occurs between ππ* states. The
rules for ISC, proposed by El Sayed suggest that heavy a
effect should be observable even in systems in which I
occurs between the singlet and triplet states of nπ* character
(Figure 8) [23]. Preliminary studies suggest that this is possi
The two systems we have examined in this context are alkano
and azo compounds both of which have been establishe
undergo ISC from nπ* singlet to pure nπ* triplet states (no

Figure 5. Emission spectra of phenanthrene included in Na, CsX.
Note the dependence of the fluorescence to phosphorescence
intensity on the % of Cs+.

Figure 6. Phosphorescence spectra of all trans-diphenylpolyenes
included within Tl+ZSM-5 at 77oK.

Figure 7. Phosphorescence spectra (at 77K) of trans-stilbene,
phenylindene and indenoindene included in TlZSM-5. Note t
variation in emission wavelength in the case of trans-stilbene with
respect to excitation wavelength. 



132 V. Ramamurthy

ed
ion
ible
al

ons
s.
e
een
ing
ative
ix
s).

 the

)-

 the
ngth
other states lie between them).
Alkanones show both fluorescence and phosphorescence.

In spite of the nπ* character of both S1 and T1 the small
energy gap is believed to favor ISC between these states.
Examination of the emission characteristics of a few alkanones
showed that the ratio of phosphorescence to fluorescence is
higher in TlY than in NaY (Figure 9). This observation indicated
that a zeolite could influence the ISC between an nπ* singlet
and an nπ* triplet. Results obtained with the azo compounds
support the above conclusion. Numerous studies on azo
compounds have established that they possess very poor ISC
and do not show phosphorescence at 77K even in the presence
of a heavy atom perturber. The lack of ISC has been attributed
to the presence of a large energy gap (>15 kcal/mole) and to
the nπ* character of the excited states involved in ISC. A
number of azo compounds that are reported to show no pho-
sphorescence in organic glass surprisingly showed pho-
sphorescence within a TlY zeolite [24]. One such example is

provided in Figure 10.

Radical Cations
Radical cations play an important role in photoinduc

electron transfer chemistry. Although spectral characterizat
of radical ions by time resolved laser spectroscopy is poss
characterization by ESR requires sufficiently long-lived radic
ions. This is generally achieved by generating the radical i
within a solvent matrix (inert freon matrix) at low temperature
Even in this matrix they have a relatively short lifetim
(seconds). Silica gel, silica-alumina, and vycor glass have b
explored as possible media to stabilize radical cations. Dur
the last decade zeolites have emerged as a possible altern
to freon matrix to stabilize radical cations [25]. In this matr
radical cations have extended lifetimes (from hours to month
We serendipitously came across a phenomenon in which

Figure 8. Possible scenarios for intersystem crossing between S1 to T1. 

Figure 9. Phosphorescence spectra of 5-dodecanone included within
NaY, CsY and TlY. Emission recorded at 77oK. Note the enhancement
in phosphorescence intensity with the heavier cation.

Figure 10. Emission and excitation spectra of diazo-(2,3
bicycloheptane included within TlY, recorded at 77oK. Insert shows
the diffuse reflectance absorption spectrum. The emission on
right is assigned to be phosphorescence. The longest wavele
band in the excitation spectrum is believed to be S0 to T1 transition.
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radical ions generated spontaneously within a ZSM zeolite
have lifetimes of the order of months [26-29]. 

When activated Na-ZSM-5 (Si/Al=22) was stirred with
α,ω-diphenylpolyenes (trans-stilbene, diphenylbutadiene, di-
phenylhexatriene, diphenyloctatetraene, diphenyldecapentene,
and diphenyldodecahexaene) in 2,2,4-trimethylpentane, the
initially white zeolite and colorless to pale yellow olefins were
transformed into highly colored solid complexes within few
minutes. All the samples exhibited intense ESR signals with g
values of 2.0028. Diffuse reflectance spectra of these powders
(Figure 11) are identical to the spectra of the radical cations
of α,ω -diphenylpolyenes reported in the literature. Diffuse
reflectance and ESR results favor the conclusion that the colored
species formed upon inclusion of α,ω-diphenylpolyenes in Na-
ZSM-5 are radical cations. The colored α,ω-diphenylpolyene
radical cations generated in the channels of Na-ZSM-5 were
found to be unusually stable; even after several weeks of storage
at ambient temperature in air, the colors persisted and the
peak positions of the diffuse reflectance spectra remained
unchanged. This is to be contrasted with their short lifetimes
in solution (microseconds) and in solid matrices (seconds).
The remarkable stability of these radical cations in Na-ZSM-5
derives from the tight fit of the rod-shaped molecules in the
narrow zeolite channels; the π-orbitals are protected from
external reagents by the phenyl rings which fit tightly in the
channels at both ends of the radical.

We have been able to generate radical cations of thiophenes
as well. When activated Na-ZSM-5 (Si/Al 22) was loaded
with terthiophene a deep red-purple complex was obtained.
Comparison of the diffuse reflectance spectrum of the above
deep red purple complex with flash photolysis results where

the terthiophene cation radical is generated as a transien
solution shows excellent agreement. As expected for a sim
cation radical, an EPR spectrum for the above complex w
observed although no hyperfine structure was resolved. 
results obtained for terthiophene included in Na-ZSM-5 a
not unique. The same type of one electron oxidation reac
for bithiophene and quaterthiophene included in ZSM-5 w
observed (Figure 12). The stability of the cation radicals, wh

Figure 11. Diffuse reflectance spectra of diphenylpolyenes included within Na-ZSM-5. All spectra seen here correspond to thcal
cations of the olefins.

Figure 12. Radical cation formation of thiophene oligomers up
inclusion within Na-ZSM-5. Diffuse reflectance spectra of radic
cations recorded at room temperature.
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exist only as reactive intermediates in solution, is much higher
within the zeolite channels; we have stored samples of the
terthiophene cation radicals for months without any significant
degradation even in the presence of air and water. Generation
of radical cations of thiaanthrene, biphenyl, para-propylanisole,
dithianes, and disulfides has been reported in the literature.

The ability to generate and stabilize radical cations of
polyenes has helped us to handle them as routine chemicals
rather than as intermediates. For example we have recorded
the emission spectra of radical cations of α,ω-diphenylpolyenes
as one would record that of parent α,ω-diphenylpolyenes
(Figure 13).

Carbocations
One can generate and stabilize select carbocations within a

zeolite [30-37]. Although this method is less general than the
ones described above for triplets and radical cations, it can be
useful in certain cases. A few examples are highlighted below.
The best choice of zeolite for generation of carbocations is
CaY. When activated CaY was added to a solution of 4-
vinylanisole in hexane, the zeolite developed a vibrant red-
violet color. The diffuse reflectance spectrum of the solid
zeolite sample presented in Figure 14 consists of two broad
absorptions centered at 340 and 580 nm. We attribute the
absorption at ~340 nm to the carbocation, 4-methoxy phenylethyl
cation. The absorption spectrum for 4-methoxy phenylethyl
cation has been reported in solution and coincides remarkably
well with the absorption maximum observed in zeolite. While
4-methoxy phenylethyl cation in solution lasts only for a few
microseconds, in a zeolite it is stable for a few days.

Behavior of diphenylethylene is similar to that of vinyl
anisole. When activated CaY was added to a hexane solution
of 1,1-diphenylethylene, the zeolite-hexane slurry turned yellow
and then green and remained green for several days. The

diffuse reflectance spectra displayed in Figure 15 for 1
diphenyl ethylene-Ca Y consist of two distinct maxima (o
below 500 nm and the other above 600 nm). The absorptio
428 nm is attributed to diphenylmethyl cation. This is consist
with the literature assignment for such a species. Once a
the cation has a few microseconds lifetime in solution wh
within a zeolite it is stable for days. The cation generation
spontaneous. Simple stirring in hexane or grinding zeolite w
the olefin results in stable carbocation which require no spe
precaution for stabilization. 

The monomer cations of vinyl anisole and diphenylethyle
were found to slowly dimerize to small amounts of dimer
cations which lasts for months. The structures of the dime

Figure 13. The emission spectra of the radical cations 1,6-
diphenylhexatriene and 1,8-diphenyloctatetraene.

Figure 14. The diffuse reflectance spectra of the monomer a
dimer cations of vinyl anisole included within CaY. The structur
of the cations are shown. The monomer cation can be selecti
washed away leaving the dimer cation within the zeolite.

Figure 15. The diffuse reflectance spectra of the monomer a
dimer cations of 1,1-diphenylethylene included within Ca2+Y. The
structures of the cations are shown. The monomer cation can
selectively washed away leaving the dimer cation within the zeol
The exact structure of the dimer cations remains unresolved.
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cations are shown in Figures 14 and 15. The structure of the
dimer cation from 1,1-diphenylethylene has not been conclusively
established. What is important to note is that one can generate
long-lived carbocations within a zeolite. The unusual ability
to stabilize certain carbocations within zeolites has allowed us
to handle them as ‘normal’ laboratory chemicals. For example
we have been able to record emission from several of these
cations. One such example is provided in Figure 16.

Zeolite as a Reaction Medium. Role of Cations
In this section we discuss how a ‘small’ (light) catio

influences the photoprocesses of an organic guest mole
included within a zeolite. Small cations generate high elec
field, polarize the electron distribution of a molecule b
electrostatically interacting with the non-bonding and/or π-
electrons of guest molecules and provide a high micropolarit

State Switching in Carbonyl Compounds: Role of Catio
Carbonyl Interaction

We have noticed that one can control the reactivity 
steroidal enones within zeolites [38-40]. We believe that t
observed effects could be the result of the field generated
cations present within zeolites. Results on one steroid 
presented below. In isotropic solution, androstenedione 
been established to react mainly from the cyclopentanone
ring. As illustrated in Scheme 1, the epimerization to yie
13-α-androstenedione is the major reaction in most solven
only in 2-propanol reduction of the cyclohexenone A ring 
able to compete with the epimerization process. Irradiation
androstenedione included in NaY gave only reduction prod
(Scheme 1); careful analysis at the initial stages of irradiat
did not show the presence of the epimer. While this molec
reacts only from the cyclopentanone D ring in hexane, 
products due to reactions from the D-ring are seen when 
included within NaY. This, we believe, is a reflection of th
lowering of the energetics of the enone chromophore w
below that of the cyclopentanone D ring. We suggest t

Figure 16. Fluorescence emission spectra of monomer and dimer
carbocations of 1,1-dianisylethyelne included within Ca2+Y recorded at
room temperature. The structures of carbocations are shown. The
exact structure of the dimer cations remains unresolved.

Scheme 1.
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lowering of the ππ* excited state of the A ring is responsible
for the changes in reactivity of androstenedione included within
NaY. Observed β-selectivity during the reduction of the enone
C=C bond can also be rationalized on the basis of changes in
the characteristics of lowest excited state. Chan and Schuster
have established in the case of 4α-methyl-4,4α,9,10-terahydro-
2(3H)phenanthrone, a molecule closely analogous to the
systems investigated here, that reduction occurs stereospecifically
from ππ* excited triplet to yield a cis fused bicyclic ketone.
This would correspond to β-addition in our examples. Based
on this analogy, one would suggest that the changes in the
characteristics of the lowest excited triplet state of the enone
chromophore discussed above is responsible for the observed
selectivity.

Triplet sensitization of 3-methyl-3-(1-cyclopentenyl)butan-
2-one, 3, yields the 1,3-acyl migration product 4 from the nπ*
triplet (and nπ* singlet) and the oxa-di-π-methane product 5
from the ππ* triplet (Scheme 2). Triplet sensitization of 3 by
4’-methoxyacetophenone in hexane gave exclusively the product
from the nπ* triplet, 4. However, in polar solvents, such as
methanol and acetonitrile, a mixture of 4 and 5 was obtained
(Scheme 2). The oxa-di-π-methane product 3 was obtained in
higher yield within zeolite than in non-polar hexane or in
other polar solvents used in this investigation. The selectivity
in favor of the ππ* triplet product observed in zeolites is
unmatched in any organic solvent, attesting to the uniqueness
of zeolites.

The above strategy of controlling product distributions by
inclusion in a zeolite also worked with 4-methyl-4-phenyl-2-
cyclohexenone 6. As shown in Scheme 3, of the several
products (7-11) that this molecule gives upon excitation, 7
and 8 have been established to arise from the nπ* triplet and
products 9-11 from the ππ* triplet. The ratio of the two sets of
products [(9+10+11)/(7+8)] has been reported to depend on
solvent polarity (Scheme 3). Similar to enone 3, in non-polar
hydrocarbon solvent, products from the nπ* triplet alone were
obtained suggesting that the lowest triplet is of nπ* in character
and the second ππ* triplet is not close enough to establish an

equilibrium and react. With increasing polarity, the two stat
apparently are brought closer in energy such that produ
from both states are formed (Scheme 3). Consistent with
behavior of enone 3, direct irradiation of 6 included within
MY and MX zeolites gave higher yields of products 9-11
derived from the ππ* triplet (Scheme 3) than in non-pola
benzene (0%) or moderately polar acetonitrile (42%). In L
the combined yield of [(9+10+11)] was >85%, even higher
than in 30% water-methanol mixture (75%). The results obtai
in Y-Sil and MCM-41 (25% of [(9+10+11)]), zeolites with no
cations, reveal the key role of cations in enhancing the yi
of ππ* triplet products.

We believe that the cations present in zeolites play a dir
role in the above state switching. This conclusion is suppor
by computational studies carried out with enones. The bind
energies for Li+ to formaldehyde and acetone have been e
perimentally measured to be ~36 and 45 kcal.mol−1, respectively.
Although the corresponding data for enones are not availa
the values are likely to be in the same range. At the MP2/6-31
level, we computed the binding energies of Li+ to cyclopentenone
and cyclohexenone to be 54 and 54.5 kcal.mol−1, respectively
(for reference, the corresponding value for acetone is compu
to be 48 kcal.mol−1). Although the strength of interaction is
likely to be reduced due to the presence of oxyanio
counterions, enones adsorbed within a zeolite are expecte
be bound to M+ ions. We therefore probed the effect of met
complexation on the orbital and excitation energies of the mo
systems, cyclopentenone and cyclohexenone, along with ace
for comparison.

As in earlier studies on simple carbonyl compounds, the +

ion is computed to be aligned nearly collinear with the C=
bond, suggesting a primarily ion-dipolar electrostatic interact
between the metal ion and the enone (Figure 17). While 
nature and relative coefficients of the MOs are not altered
any significant manner, all the MOs are shifted to lower energ
through coordination. The key MOs of importance in the pres
context are the p-type n orbital on the carbonyl oxygen, 
filled π (higher lying π2 for the enones) and the vacant π*

Scheme 2. Scheme 3.
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orbitals (shown in Figure 17 for cyclopentenone). The n orbital
is stabilized by Li+ complexation to a greater extent than the π
MO in the model enones (Table 4), suggesting that the nπ*
triplet will be relatively shifted to higher energy due to cation
binding. The CIS(D)/6-31+G* calculations confirm that the nπ*
triplet is the lowest energy triplet in the three model systems
(Table 4). While this is expected for acetone on the basis of
orbital energies, the trend prevails in the enones in spite of the
fact that the n orbital is below the π2 HOMO. More significant
in the present context is the effect of Li+ coordination on the
energies of the triplet states. While the nπ* triplet is clearly

shifted to higher energy, the ππ* triplet is marginally stabilized
in the enones. The lower energy triplet is now calculated to
the ππ* state. The switch in the ordering of the triplet stat
and their relative energies are both qualitatively consistent w
the observed product selectivities in photoreactions of eno
in zeolites. The fact that different ordering of nπ* and ππ*
states are obtained at CIS and CIS(D) level suggests that c
free cyclopentenone the two states are very close. The na
of the lowest triplet of enones is very much dependent on 
structure of the enone. For all the examples shown in Scheme
3 the lowest triplet in non-polar solvent is established to 
nπ* in character.

Consistent with the above speculations the emission spe
of acetophenones within NaY correspond to that of a ππ*
triplet state [41]. Acetophenone both in the singlet and trip
manifolds possesses close lying nπ* and ππ* excited states.
Both in polar and non-polar solvents nπ* triplet is the lowest
excited state (Figure 18). We illustrate here that the influen
of cations on the ordering of excited state can be ea
inferred from the emission spectrum of the adsorbed keto
Acetophenone, para-fluoroacetophenone, and para-metho-
xyacetophenone are chosen as examples. Based on
knowledge that a highly polar medium would be expected
increase the energy of the nπ* state and lower the energy o
the ππ* state, one would predict that the lowest excited sta
of acetophenone and para-fluoroacetophenone could be altere

Figure 17. Schematic representations of (from right to left) n, π2 and π* orbitals of cyclopentenone (top) and cyclopentenone-Li+ complex.

Table 4. Ground state orbital energies (HF/6-31G*) and energies
of triplet states relative to the ground state (CIS(D)/6-31+G*) for
carbonyl compounds and their Li+ complexes

Molecule/ Ion
Orbital Energy (eV) Triplet Energy (eV)a

π n π* n-π* π-π*

Acetone -13.03 -11.19 4.28 4.04(4.41) 6.28(5.19)
Acetone+Li+ -18.45 -16.67 -2.08 4.51(5.16) 6.63(6.38)
Cyclopentenone -10.21 -10.86 2.93 3.69(4.33) 4.23(3.36)
Cyclopentenone+Li+ -14.31 -15.99 -1.99 4.35(5.29) 4.10(3.43)
Cyclohexenone -10.08 -10.90 2.80 3.50(4.13) 4.05(3.17
Cyclohexenone+Li+ -14.03 -15.74 -2.02 4.15(5.11) 3.84(3.19)
aResults obtained at CIS/6-31+G* level (without doubles corrections)
are given in parentheses
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within a zeolite while that of para-methoxyacetophenone will
remain to be ππ* state in all solvents and in zeolites. Indeed
the phosphorescence emission of para-methoxy acetophenone
in NaY and CsY was structureless, characteristic of the ππ*
state (Figure 19). On the other hand, the structural resolution
of the phosphorescence emission from acetophenone was
dependent on the cation. In NaY the emission was structureless,
typical of ππ* emission and in CsY it was structured similar
to that in methanol-ethanol mixture (Figure 18). Observations
made with para-fluoroacetophenone were similar. Based on
the appearance of the phosphorescence spectra we believe
that both acetophenone and para-fluoroacetophenone possess
ππ* excited states within NaY and nπ* state within CsY.
Considering that these two ketones have nπ* state as their
lowest excited triplet in the most polar solvent mixture,
methanol-ethanol, the ability to switch the states within a zeolite
using cations is novel and important. 

Selectivity During Singlet Oxygen Mediated Oxidation of
Olefins. Role of Cation-Olefin π Interaction

Singlet oxygen is known to react with electron-rich olefins

via a 2+2 addition process. When the olefin contains ally
hydrogen atoms, however, the ‘ene reaction’ is the domin
pathway. Olefins with more than one distinct allylic hydroge
yield several hydroperoxides (Scheme 4). With a zeolite med
high selectivity during the singlet oxygen ene reaction has b
achieved.

Monomeric thionin is a useful sensitizer for the generation
singlet oxygen. Singlet oxygen, generated using thionin includ
in a zeolite, is capable of undergoing an ene reaction w
typical olefins such as 2,3-dimethyl-2-butene and 2-meth
4,4-dimethyl-2-pentene. The product distribution observed w
1,2-dimethylcyclohexene suggests that the hydroperoxi
so obtained are not the result of reaction with ground-st
triplet oxygen (Scheme 5). These observations confirm that 
can generate a reactive singlet oxygen within the confines 
zeolite [42-44]. A number of olefins of structure similar to 1
methyl-2-pentene were examined. These olefins contain 
distinct allylic hydrogen atoms and, in an isotropic solutio
yield two hydroperoxides with no appreciable selectivi
(Scheme 6). Within NaY, a single hydroperoxide is preferentia
obtained. Similar selectivity was also observed with relat

Figure 18. The emission spectra of acetophenone: (top) in
methylcyclohexane (MCH) and methanol-ethanol mixture (MEET)
at 77 K. (bottom) in NaY and CsY.

Figure 19. The emission spectra of para-methoxyacetophenone:
(top) in methyl-cyclohexane (MCH) and methanol-ethanol mixtu
(MEET) at 77K. (bottom) in NaY and CsY.
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olefins such as the 1-methyl-4-aryl-2-butenes and even more
impressive results were obtained with 1-methylcycloalkenes
(Scheme 7). These alkenes yield three hydroperoxides in

solution with the hydroperoxide resulting from abstraction 
the methyl hydrogens formed in the lowest yield. Surprising
the minor isomer in solution was obtained in larger amou

Scheme 4.

Scheme 5.

Scheme 6.
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within the zeolite. Thus the selectivity is a characteristic of
hydroperoxidation of olefins within zeolites. Product hydro-
peroxides were isolated in ~75% yield.

The above selectivity is attributed to the polarization of the
olefin by the interacting cation. As shown in Figure 20, when
the olefin is asymmetric, the interacting cation will be able to
polarize the olefin in such a way that the carbon with greater
numbers of alkyl substituent will bear a partial positive charge
(δ+). Singlet oxygen being electrophilic is expected to attack
the electron rich carbon (δ−), the one with less substituents,

and lead to an ene reaction in which the hydrogen abstrac
will occur selectively from the alkyl group connected to th
carbon bearing δ+. Polarization within a zeolite of molecule
such as pyrene, NO, olefin-oxygen have been previou
reported. In our system, the extent of polarizability will depe
on the charge density of the cation. Smaller cations such
Li + would be expected to polarize the olefin more than larg
cation such as Cs+. As per this model, selectivity is expecte
to decrease from Li+ to Cs+. Consistent with both the above
two models, observed selectivity decreases with the size
the cation (Scheme 8; Li+>Na+>K+>Rb+>Cs+).

The above models assume that there is an interaction betw
the cation and the olefin and that the interaction ene
decreases with the size of the cation. Ab-initio quantu
mechanical calculations performed with several olefins clea
show a decreasing trend in the binding energy between
cation and the olefin, the smaller cations binding more stron
Although at present we have no direct evidence for interact
between cations and olefins, such interactions in the cas
aromatics via absorption, emission and solid state NMR stud
have been established.

Scheme 7.

Figure 20. The π HOMO of 2-methyl-2-butene (left) and its Li+

complex (right) calculated at the HF/6-31G** level.

Scheme 8.



Photochemistry Manipulated by Organic and Alkali Metal Interactions in Zeolites 141

he
on a
tate
en
the
and
the
 be
ed
nyl

r
ar-
ny

thin
ucts
are
 do

ica
Cation Interactions Restrict the Mobility of Reactants and
Intermediates: Cation-Aromatic π-Interaction

Photo-Fries rearrangement of phenylacetate and photo-
Claisen rearrangement of allylphenyl ether yield ortho-hydroxy
and para-hydroxy isomers as products (Schemes 9 and 10)
[45]. In solution, independent of the polarity of the medium,
one obtains a mixture. On the other hand, zeolite once again
comes handy to control the product distribution [46-50].
Remarkably, while in solution eight products are formed, within
NaY zeolite a single product dominates the product mixture
(Scheme 11). 

Both photo-Fries and photo-Claisen rearrangements proceed
via a similar mechanism (Scheme 12). Promotion to the excited
singlet state results in fragmentation of the ester and the ether.
Cage escape, recombination, and hydrogen migration result in
both the ortho- and the para-isomers. However, the factors
that control the outcome of the products vary with the nature
of the medium. In solution, it is the electron densities at various
aromatic carbons in the phenoxy radical which control the
regioselectivity. Selectivity within zeolites, results from the

restriction imposed on the mobility of the phenoxy and t
acyl fragments by the supercage and the cations. Based 
comparison of the results observed in the case of phenylace
and allylphenyl ether we believe that an interaction betwe
the cation and the two reactive fragments is contributing to 
observed selectivity. While the size and shape of the acyl 
allyl radicals are expected to be similar, the strength of 
interaction between the cations and these fragments will
different. The weaker binding of the allyl radical is translat
to an increased yield of the para-isomer in the case of allylphe
ether. 

Recognition of the following features of the zeolite interio
has helped us control site-selectivity during various photore
rangements: The cavity walls of zeolites, unlike those of ma
other organized media, are not ‘passive’. Cations present wi
zeolites help anchor the reactants, intermediates and prod
to the surfaces of a reaction cavity. In addition, the walls 
very ‘hard’ so that the shapes and volumes of the cavities
not change during the time period of reactions. 

The feature that distinguishes zeolite surfaces from sil

Scheme 9.

Scheme 10.

Scheme 11.
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and alumina surfaces is the presence of cations. Although
cations are embedded on the surface of a zeolite through
interaction with surface oxygens, one face of these cations is
free to interact with the guest molecules. We have exploited
this feature to control the stereoisomers formed in a reaction.
Diphenylcyclopropane upon triplet transfer sensitization yield
a photostationary mixture consisting of nearly equal amounts
of cis and trans isomers (Scheme 13) [51]. On the other hand,
similar sensitizations (para-methoxy acetophenone) within a
zeolite yield selectively the cis isomer. This remarkable one-
way isomerization can not be achieved in solution even in
presence of cations (acetonitrile-lithium perchlorate solution).
Selective formation of the cis isomer depends on the nature of
the cation (best results are achieved with lithium and sodium
ions). Consideration of the structures of the cis and trans isomers
provides a clue to the factor that might be involved in the
formation of cis isomer within a zeolite. The cation is likely to
complex more easily with the bowl shaped cis isomer than
with the linear trans isomer (Scheme 13). This selective binding,
we believe, is responsible for enrichment of the cis isomer at
the photostationary state. This conclusion is consistent with
the lower ratio of the cis isomer within wet NaY zeolite. 

Enantioselective Photoreactions within Zeolites. Developm
and Establishment of the Concept and Generalizations

An ideal approach to achieving chiral induction in 
constrained medium such as zeolite would be to make use
chiral medium. To our knowledge no zeolite that can a
commodate organic molecules, currently exists in a stable ch
form. Though zeolite beta and titanosilicate ETS-10 ha
unstable chiral polymorphs, no pure enantiomorphous for
have been isolated. Although many other zeolites c
theoretically, exist in chiral forms (e.g., ZSM-5 and ZSM-1
none has been isolated in such a state. In the absenc
readily available chiral zeolites, we are left with the choice
creating an asymmetric environment within zeolites by t
adsorption of chiral organic molecules.

In order to provide the asymmetric environment lacking 
zeolites during the reaction a chiral source had to be emplo
For this purpose, in the approach we refer to as the ch
inductor method (CIM), where optically pure chiral inducto
such as ephedrine were used, the non-chiral surface of
zeolite becomes ‘locally chiral’ in the presence of a chi
inductor. This simple method affords easy isolation of t
product as the chiral inductor and the reactant are not conne
through either a covalent or an ionic bond. In all our stud
alkali ion-exchanged zeolites X and Y were used as reac
media [52-68]. 

The chiral inductor that is used to modify the zeolite interi
will determine the magnitude of the enantioselectivity of t
photoproduct. The suitability of a chiral inductor for a particul
study depends on its inertness under the given photochem
condition, its shape, size (in relation to that of the react
molecule and the free volume of the zeolite cavity) and 
nature of the interaction(s) that will develop between t

Scheme 12.

Scheme 13.
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chiral agent and the reactant molecule/transition state/reactive
intermediate. One should recognize that no single chiral agent
might be ideal for two different reactions or at times structurally
differing substrates undergoing the same reaction. These are
inherent problems of chiral chemistry. 

To examine the viability of CIM we have explored a number
of photoreactions (electrocyclic reactions, Zimmerman (di-π)
reaction, oxa-di-π-methane rearrangement, Yang cyclization,
geometric isomerization of 1,2-diphenylcyclopropane derivatives,
and Schenk-ene reaction) which yield racemic products even
in presence of chiral inductors in solution (Scheme 14). We
have obtained highly encouraging enantiomeric excesses (ee)
on two photoreactions within NaY: photocyclization of tropolone
ethylphenyl ether (eq. 1, Scheme 14). and Yang cyclization of
phenyl benzonorbornyl ketone (eq. 3, Scheme 14). The ability
of zeolites to drive a photoreaction that gives racemic products in
solution to ee >60% provides hope of identifying conditions
necessary to achieve high ee for a number of photoreactions
with zeolite as a reaction medium. The following generalizations
have resulted from the above studies: (a) Moderate but
encouraging ee (15-70%) can be obtained in zeolites for systems
that only result in racemic products in solution. (b) Not all
chiral inductors work well within a zeolite. Best results are
obtained with ephedrine, norephedrine and pseudoephedrine.
(c) The extent of ee obtained is inversely related to the water

content of the zeolite. (d) The ee depends on the nature o
alkali cation present in a zeolite. For example, the ee 
photocyclization of tropolone ethylphenyl ether, within (+
ephedrine adsorbed, various cation exchanged zeolites a
follows: LiY: 22%; NaY: 68%; KY: 11% and RbY: 2%. 

The strategy of employing chirally modified zeolites as
reaction medium requiring the inclusion of two differen
molecules, a chiral inductor (CI) and a reactant (R), within t
interior space of an achiral zeolite, by its very nature does 
allow quantitative asymmetric induction. The expected s
possible statistical distribution of the two different molecul
CI and R when included within zeolites X and Y shown 
Scheme 15-I are: cages containing two R molecules (type
one R and one CI (type B), single R (type C), two CI (type D
a single CI (type E), and no CI and R molecules (type F). T
products obtained from the photoreaction of R represent 
sum of reactions that occur in cages of types A, B and C
which, B alone leads to asymmetric induction.

Obtaining high asymmetric induction therefore requires t
placement of every reactant molecule next to a chiral induc
molecule (type B situation); i.e., enhancement of the ratio o
type B cages to the sum of types A and C. This led us
explore the chiral auxiliary method (CAM) in which the chira
perturber is connected to the reactant via a covalent bond
this approach, most cages are expected to contain both
reactant as well as the chiral inductor components within 
same cage. We have tested the CAM with several react
(electrocyclic reactions, oxa-di-π-methane rearrangement, Yan
cyclization, and geometric isomerization of 1,2-diphenylc
clopropanes; for selected examples see Schemes 16 an
and have found that the diastereomeric excesses (de) obta
within zeolites are far superior to that in solution; de >75
have been obtained within MY zeolites for several syste
which yield photoproducts in 1:1 diastereomeric ratio in solutio
The observed generality suggests the phenomenon respon
for the enhanced asymmetric induction within zeolites to 

Scheme 14.

Scheme 15
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independent of the reaction. The GC traces of the photoprod
from tropolone 2-methyl-butyl ether (TMBE) and amide deriv
from L-valine methyl ester and 2β,3β-diphenylcyclopropane-
1-α-carboxylic acid in various cation exchanged Y zeolit
shown in Figures 21 and 22 illustrate that the cations pres
in a zeolite play a critical role in the asymmetric inductio
process and is further proved by the direct correlation of de
the water content of the zeolite. For example in the case o
phenylethyl amide of 2β,3β-diphenylcyclopropane-1α-carboxylic
acid (Scheme 16, eq. 4) saturating the LiY with wat
dramatically reduced the de from 80% (dry) to 8% (wet). W
believe that co-ordination of water to the cation reduces 
influence of the cation on the reaction.

It is possible that the reactant and covalently linked chi
inductor still remain in different cages (type B in Scheme 1
II) by adopting an extended conformation that could result
<100% de. We have attempted to provide an asymme
environment to such molecules by using a chirally modified

Scheme 16.

Scheme 17.

Figure 21. GC traces of the photoproducts from tropolone 2-methyl butyl ether, A refers to the first of the two peaks correspong to
product diastereomers.

Figure 22. GC traces of the trans diastereomers of the am
derived from L-valine methyl ester and 2β,3β-diphenylcyclopropane-
1α-carboxylic acid. Note the difference in the peaks being enhan
within LiY and KY.
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zeolite as the reaction medium (Scheme 2-III; CIAM). Within
(−)-ephedrine modified NaY the de with TMBE increased from
53% to 90% (Figure 1) while it decreased from 59% to 3% in
the case of 1-phenylethylamide of 2,6,6-trimethylcyclohexa-
2,4-diene-1-one-4-carboxylic acid (eq. 1 Scheme 16). Thus
the combination of the chiral inductor and the chiral auxiliary
has led to a limited success. However, the 90% de obtained
with TMBE within (−)-ephedrine modified NaY is the highest
thus far reported for any photochemical reaction in a non-
crystalline medium. As shown in Figure 29 the 20% decrease
in the maximum de obtained with (+)-ephedrine from that to
its antipode (90% in (−)-ephedrine and 70% in (+)-ephedrine)
suggests the reactions to occur in two types of cages, one that
contains TMBE alone and the second that contains TMBE
and a chiral inductor (type A and type B respectively in Scheme
15-III.

One of the drawbacks of the use of zeolite as a reaction
medium is the difficulty in controlling the distribution of
reactants and chiral inductors as illustrated in Scheme 15-I.
This problem could be overcome by localizing the photoreaction
to those cages in which the reactant is next to a chiral inductor
(type B in Scheme 15-I). We have explored this concept with
the photoreduction of ketones by amines as a probe reaction.
The ketone we have examined is phenyl cyclohexyl ketone
(Figure 23). This ketone upon excitation in solution gives an
intramolecular γ-hydrogen abstraction Norrish type II product.
However, when included within a chirally (ephedrine, pseudo-
ephedrine or norephedrine) modified zeolite, it gave the
intermolecular reduction product, α-cyclohexyl benzyl alcohol.
The ratio of the intermolecular reduction to Norrish type II
product was dependent on the nature (primary, secondary or
tertiary) and amount of the chiral amine. These observations

are indicative of the reduction occurring only in cages th
contain a chiral inductor. Using norephedrine as the ch
inductor the ee obtained on the reduction product is 68% (Fig
23). As expected, the enhanced isomer is reversed with
antipode of the chiral inductor. It is important to note th
under similar conditions in solution no ee was obtained in 
reduction product. We have established the strategy prese
above with phenyl cyclohexyl ketone to be general 
investigating a number of aryl alkyl and diaryl ketones (Sche
18). Despite the high ee obtained by this approach where e
reaction occurs within chirally modified cages, the %ee is n
quantitative.

SUMMARY

During the past three decades a number of organi
assemblies (micelles, vesicles, mono- and bilayers, liquid crys
cyclodextrins, silica, clay and zeolite surfaces etc.) have b
examined as media to control the excited state behavio
organic molecules. Each of them is unique in their ability 
modify photoreactions. Zeolites are far more versatile in th
ability to control reactions of a large variety of molecule
Zeolites are porous, highly interactive matrices. Zeolites serv
powerful matrices to monitor phosphorescence from molecu
that do not phosphorescence under conventional conditio
Proton transfer and electron transfer are the two fundame

Figure 23. GC traces of the enantiomeric α-cyclohexyl benzyl
alcohol. (+) and (-) Norephedrine enhances, as expected, opposite
optical isomers.

Scheme 18.
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reactions that take place within a zeolite and most often zeolite
matrix themselves participate in these reactions. Radical cations
and carbocations generated via electron and proton transfer
processes have long lifetime within a zeolite and thus lend
themselves to be handled as ‘regular’ chemicals. 

Cations being Lewis acids interact with π-electrons of
included organic molecules and thus influence their location,
adsorption mode and conformation. Such controls can be
translated into product selectivity. ‘Naked’ cations within a
zeolite provide an unprecedented opportunity to explore reactions
catalyzed by cations. These cations are capable of polarizing
π-electrons and thus may bring about reactions that are
normally considered less likely in solution.

Ability to include two molecules within a supercage provides
an opportunity to establish a communication between two
molecules in an excited state. Such interactions have resulted
in energy transfer, electron transfer and chiral induction. Of
these chiral induction within zeolites is most unique and one
is able to achieve high chiral induction in systems which yield
racemic products in solution.
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